

Name:__

 1

Problem 1: (15 points) Floating Point Representation=

1. (5 points) Translate the decimal number -5.375 to a 32 bit IEEE 754 single
precision floating-point number

2. (5 points) Translate the hexadecimal number 0x3CC00000 to decimal number
in normalized scientific notation form (3 points partial credit if in normalized
binary scientific notation).

3. (5 points) Translate the hexadecimal number 0x021FC027 to a MIPS
instruction using register names, e.g. $s0, $t0, …

Name:__

 2

Problem 2: (30 points) MIPS Reverse Compilation

Consider the following MIPS assembly code:

 add $v0, $zero, $zero
 add $v1, $zero, $zero
 add $s0, $zero, $zero
Loop: add $s1, $s0, $s0
 add $s1, $s1, $s1
 add $t0, $a0, $s1
 add $t1, $a1, $s1
 lw $t4, 0($t0)
 slt $s4, $zero, $t4
 bne $s4, $zero, There
 sub $t4, $zero, $t4
 addi $v1, $v1, 1
 j Next
There: addi $v0, $v0, 1
Next: sw $t4, 0($t1)
 addi $s0, $s0, 1
 bne $s0, $a2, Loop
Exit: ...

1. (10 points) Assume that two arrays A and B are located somewhere in memory;
the base addresses of A and B are stored in $a0 and $a1, respectively, and their
size is stored in $a2. Describe concisely what the code does. Specifically, at the
end of execution, what will be stored in array B? What values will $v0 and $v1
contain?

Name:__

 3

2. (20 points) Convert the following instructions from the code above into 32 bit
hexadecimal number. Assume that the address of the first instruction (add
$v0, $zero, $zero) is located at address 0x04000000.

a. (5 points) add $t0, $a0, $s1

b. (5 points) lw $t4, 0($t0)

c. (5 points) j Next

d. (5 points) bne $s0, $a2, Loop

Name:__

 4

Problem 3: (40 points) Circular Lists

We’re writing a circular linked list to keep numbers. The idea is very similar to the
single-linked list we discussed in class, but the last element will now point to the first
element, instead of having a NULL pointer. Our circular linked list is made up of
elements of type pair. Here’s an example of a circular linked list on the left, with the
pair structure definition on the right:

In the above figure, we have 4 pair structures linked into a circular list. The values of the
circular list are { 1, 2, 3, 4 }. The variable head is a pointer to a pair structure and it
always points to the first element of the list.

1. (10 points) Given the following data layout in memory and knowing that the
variable head = 0x1000, draw a sketch similar to the one above of the
circular list represented below:

Address Value
0xFFFF .

.

.
 0x8480

0xFFA4 0x000F

.

.

.
 0xFFA4

0xC84C 0x0008

.

.

.
 0x1000

0x8480 0xC84C

.

.

.
 0x0000

0x1000 0x2480

.

.

.
 0xC84C

0x0000 0x0004

Name:__

 5

2. (25 points) Below is a function called reset_numbers that attempts to set all
the values in the circular list to the specified integer.

void reset_numbers(struct pair *p, int i)
{
 if(p != NULL) {
 p->car = i;
 reset_numbers(p->cdr, i);
 }
}

Convert reset_numbers to MIPS assembly. You must exactly translate the code
above, i.e. you should not try to optimize it and it must be recursive. Also, you must
follow all of the MIPS procedure conventions. Failure to do either of these will
result in a significant loss of points.

3. (5 points) In one sentence, describe what happens on an actual MIPS machine if

we call reset_numbers on a non-empty list as described in this problem

